genapta

GEN-1130-5

Counter/Shift Register Interface IC

V2.0-071204

Features

- **Digital Input Filter**
- 30 bit Up/Down counter
- 30 bit PISO Shift Register
- Zero Reference mark support •
- **Counter Inhibit** •
- Tristate bus output •
- High Performance Maximum input speed of 10MHz
- 5V or 3.3V I/O Capability
- Samples are available ٠

Package: 44 Pin PLCC Operating Temperature Range: -20°C to 85°C

Description

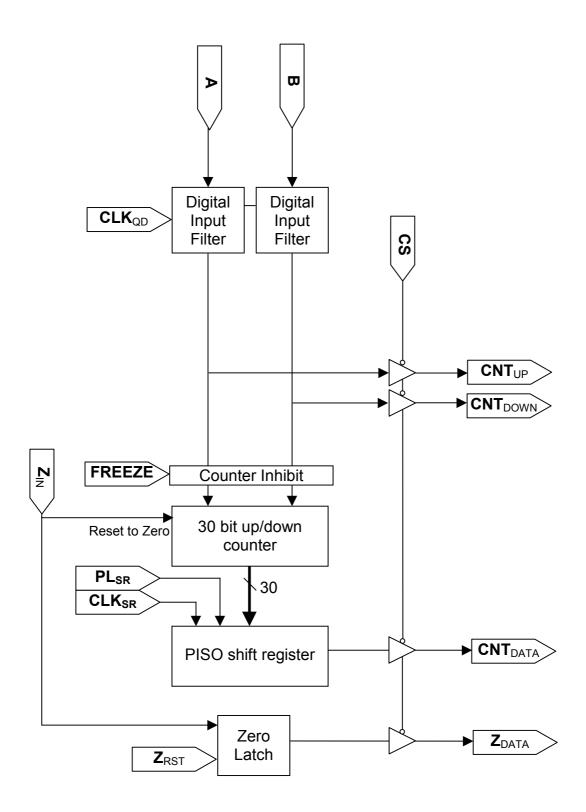
The GEN-1130-5 is a highperformance multi-purpose Interface IC. It contains a digital input filter connected to a resettable 30-bit up/down counter and PISO shift register, allowing consistent extraction of the counter value with low interface pin counts.

5 vid	4,44
79	• []39
De De	D38
90 100	636
1	Ł.
0ai 170	130 129
	5/55

Parameters:		10 19 20 21 27 28		
Parameter	Min	Max	Units	
V _{CCINT} Supply voltage for internal logic	4.75	5.25	V	
V _{CCIO} Supply voltage for output drivers	4.75	5.25	V	
	3.0	3.6		
Low level input voltage	0	0.8	V	
High level input voltage	2.0	V_{CCINT} +0.5	V	
Output Voltage	0	V _{CCIO}	V	

Parameter	Test Conditions	Min	Max	Units
Output high voltage for 5V	I= –4.0mA V _{CC} = Min	2.4		V
outputs				
Output high voltage for 3.3V	I= –3.2mA V _{CC} = Min	2.4		V
outputs				
Output low voltage for 5V	I= 24mA V _{CC} = Min		0.5	V
outputs				
Output low voltage for 3.3V	I= 10mA V _{CC} = Min		0.4	V
outputs				
Input leakage current	V _{CC} = Max		±10	μA
	V_{IN} = GND or V_{CC}			
I/O high-Z leakage current	V _{CC} = Max		±10	μA
	V_{IN} = GND or V_{CC}			
I/O capacitance	V _{IN} = GND f= 1.0MHz		10	pF

Important Notice


genapta decoders are not recommended for use in safety critical applications. eq: Life support systems, critical care medical equipment, ABS braking systems and power steering. Please contact us for clarification if required

Pin Assignments*

Pin	I/O	Name	Description
2	I	PL _{SR}	Shift Register Parallel Load
5		CLK _{QD}	Input from external clock source (max 32MHz).
			Determines maximum input speed for Quadrature
			Decoder and Input Filter.
6		CLK _{SR}	Shift Register Clock
7	I	Z _{RST}	Zero reset. Rising edge turns Z_{DATA} low. Z_{RST} is
			asynchronous with respect to any other input
			signal.
9	0	Z _{DATA}	Zero data. Initially low, will go high on rising edge
			of Z_{IN} , and remain high until a rising edge on Z_{RST} .
10	-	GND	GND
11	0	CNT _{DATA}	Count Data. Output from Shift Register
21	-	V _{CCINT}	+5V
23	-	GND	GND
31	-	GND	GND
32	-	V _{CCIO}	+5V/+3.3V - I/O Voltage
35	1	А	Count up. A rising edge on A increments the
	•		counter by 1.
36 0			Count up. Connected to the output of the digital
		OTT OF	input filter.
37	1	В	Count down. A rising edge on B decrements the
		_	counter by 1.
38	I	FREEZE	Inhibit any counter value change when high.
			Normal operation when low.
20			Zero/Reference mark input. Reset internal position
39	I	Z _{IN} (RST)	counter to 0. Sets Z_{DATA} . Z_{IN} is asynchronous with
			respect to any other input signal.
40	1	CS	Chip Select, when high, CNT_{DATA} , CNT_{UP} ,
40	I	0.5	CNT_{DOWN} and Z_{DATA} are undriven (tristate), when low, the pins drive their respective values.
41	-		+5V
41	-	V _{CCINT}	-
43	0	CNT _{DOWN}	Count down. Connected to the output of the digital input filter.

*All other package pins should be tied to GND to ensure correct operation.

Functional Block Diagram:

Component Description

Digital Input Filter

The optional digital input filter is responsible for removing noise from the incoming quadrature signals. A delay filter of 3 CLK_{QD} cycles rejects spikes of short duration. The input data is tested for a stable level being present for 3 consecutive rising clock edges, and the filtered output will only change after the input signal has remained consistent for this time. Short noise spikes and pulses shorter than 2 clock periods are ignored.

The operation of the digital input filter places constraints on the maximum speed of input signals A and B. Because the signals must remain constant for 3 clock cycles, they can have an absolute maximum frequency of $(CLK_{QD} / 3)$, and should be slower than this where noise is present. It is recommended that the input frequency is less than $CLK_{QD} / 6$.

Counter

This consists of a 30 bit binary up/down counter which counts on rising edges of the A and B inputs.

When FREEZE is high, the counter's value will not change.

The counter can be cleared to 0 asynchronously by a rising edge on $Z_{\text{IN}.}$

Shift Register

The Shift Register operates on a separate clock to the rest of the components.

Data is latched into the shift register on a rising edge of CLK_{SR} while PL_{SR} is held high. All 30 bits of data are transferred simultaneously.

The LSB of the counter's value is then available immediately on CNT_{DATA} . On each further rising edge of CLK_{SR} (with PL_{SR} low) the next highest bit of the counter's value is latched to CNT_{DATA} .

After 29 CLK_{SR} rising edges, further CLK_{SR} rising edges will latch 0 to CNT_{DATA} .

At any point if PL_{SR} is held high for one rising edge of CLK_{SR} then a new count value will be latched into the shift register.

Zero/ Reference Mark

A rising edge on Z_{IN} will:

- Set the counter to have value 0
- Latch Z_{DATA} high.

 Z_{DATA} will then remain high until a rising edge occurs on Z_{RESET} , which will latch Z_{DATA} low again.

If a rising edge occurs on Z_{IN} , while Z_{RESET} is high, then Z_{DATA} will still become latched high.

 Z_{IN} and Z_{RESET} are asynchronous input signals.

While FREEZE is high, the counter's value will be inhibited from changing.

Tristate Output

All chip outputs are tristate-capable, to permit easy connection to a bus. When CS is high, all outputs become undriven. When CS is low, outputs drive their respective values.